
Thank you for your purchase! To ensure seamless after-sales support,
please activate your product using the link below:

Activate Now

Your activation is essential for us to provide you with the best assistance. We appreciate your
cooperation.

Technology Used
● Flutter with Dart Language for Mobile App

● NodeJS with Express Framework for API

● MySQL for Database

● MariaDB for Database

Please follow the below steps to set up the project on your server.

(We have provided the steps to set up using Visual Studio Code Editor. You can use other editors also.
Steps may vary based on your editor.)

1. Setup Prerequisite (If not available)

a. Install Visual Studio Code (VSCode) from this link

b. Install NodeJS from this link (Minimum version 16.14.0)

c. Install and set up Flutter from this link

d. Install MySQL from this link

(You can choose the MySQL edition based on your needs)

e. Install MySQL Workbench from this link (This is optional)

2. Setup Web API (Technology Node js)

a. Setup database credentials

i. Open variable.json file from Source Code\Web API\ And
replace your credentials

https://ticket.native.software/signup
https://code.visualstudio.com/Download
https://nodejs.org/en/download
https://docs.flutter.dev/get-started/install
https://www.mysql.com/downloads/
https://dev.mysql.com/downloads/workbench/

3. Insert Master Data into the Database

a. After a successful web API setup, you just need to create an empty

database with the same credentials that you have provided above in

the db.ts file. If you have already done this then please skip this

step. Or you can refer Accounts-Pro-Quick-Start-Guide document

for how to create a database

b. After the above step. Please go to the web API and run the

command npm start. While running the web API it will check and

create all the needed tables in an empty database

c. After all tables are created then you need to import CSV files for the

master data. Go to the database and follow below steps
i. Open valuetypes table and import Source Code\Master Data

csv\valueTypes.csv
ii. Open authproviders table and import Source Code\Master Data

csv\authProviders.csv
iii. Open country table and import Source Code\Master Data

csv\country.csv
iv. Open currency table and import Source Code\Master Data

csv\currency.csv

v. Open expensecategories table and import Source Code\Master Data
csv\ExpenseCategories.csv

vi. Open flaggroup table and import Source Code\Master Data
csv\flagGroups.csv

vii. Open gstslabs table and import Source Code\Master Data
csv\GstSlabs.csv

viii. Open modulegroups table and import Source Code\Master Data
csv\moduleGroups.csv

ix. Open modulepermissions table and import Source Code\Master Data
csv\modulePermissions.csv

x. Open modules table and import Source Code\Master Data
csv\modules.csv

xi. Open systemflags table and import Source Code\Master Data
csv\systemFlags.csv

xii. Open unitcombinations table and import Source Code\Master Data
csv\UnitCombinations.csv

xiii. Open Units table and import Source Code\Master Data csv\Units.csv
xiv. Open userflaggroup table and import Source Code\Master Data

csv\userFlagGroups.csv
xv. Open userflags table and import Source Code\Master Data

csv\userFlags.csv
xvi. Open userroles table and import Source Code\Master Data

csv\UserRoles.csv

4. Setup Mobile App (Technology Flutter)

a. Initial steps to set up and run mobile app

i. Open the App folder in the VSCode

ii. Run the following commands in the VSCode Terminal

flutter clean
flutter pub get

iii. Additional steps to set up for iOS (You can skip these steps if you don’t
want to set up for iOS)

1. In the VSCode terminal, go to the ios directory

(using the command cd ios)

2. Run the following command to install pods

pod install

iv. Connect your Android or iOS device with your machine

(To run on an Apple device, you must have an Apple computer)

v. Run the following command to run on an Android or iOS device

flutter run

vi. To upgrade the Flutter version run the following command in the VSCode
Terminal

(Only if your Flutter version is lower than mentioned in this document)

flutter upgrade

b. Setup Facebook app Credentials

Open string.xml file from App\android\app\src\main\res\values and
set credentials. If you do not have setup face book app then please
visit
https://developers.facebook.com/docs/development/create-an-app/
for more information

https://developers.facebook.com/docs/development/create-an-app/

c. Change Credentails

After the setup of your API and Admin panel, Open variable.json file from
Source Code\App\assets\jsondata\variable.json And replace your credentials
where value starting from <Your

d. Change Package Name/Bundle ID

An app's package name is a unique identifier that is automatically created when
you create an app. The term used for iOS apps is "bundle ID" and for Android
apps, it is "package name".

i. Set Package Name for Android App

1. Change the package name in the file located at
android/app/src/main/AndoidManifest.xml

2. Change the package name in the file located at
android/app/src/debug/AndoidManifest.xml

3. Change Package Name in file which is located at
android/app/src/Profile/AndoidManifest.xml

4. Change the Package Name in the file which is located at
android/app/build.gradle

5. Change the folder structure for the below path as per your package
name.

android\app\src\main\java\com\demo\accountspro\

Ex. If your package name is com.demo.accountspro

android\app\src\main\java\com\app\accountspro\

6. Change Package Name in file which is located at
android\app\src\main\java\com\demo\accountspro\MainActivity.jav
a

ii. Set Bundle ID for iOS App

1. In VSCode

a. Go to ios/Runner/info.plist

b. Change the string of key CFBundleIdentifier

c. Change the credentials of face book app

2. In XCode

a. Right-click on the iOS folder and Choose Open in Xcode Option

b. Click on the folder icon left side of the XCode window

c. Select Runner.

d. Select Target runner

e. Go to identity

f. Change Bundle Identifier

e. Create and set Keystore file for Android

i. Create a keystore.jks file, if not exist, use the below command in the
terminal

keytool -genkey -v -keystore "path\keystore.jks" -storetype JKS -keyalg
RSA -keysize 2048 -validity 10000 -alias keystore

ii. Fill in all the details asked while executing the above command

iii. Recommended. After creating your keystore.jks file, please put it in the
android/app folder

iv. Create key.properties file in the android folder and add the details in the
file as per the below screenshot.

NOTE:

● If you have changed any default value for any of these keys
(storePassword, keyPassword, keyAlias, storeFile) while creating the
keystore.jks file, then please also change them to key.properties file.

● If you place your keystore.jks file somewhere else in the project than
mentioned in step 5.c.iii then please change storeFile key value accordingly.

● For more details please refer to this link

https://docs.flutter.dev/deployment/android

f. Create Firebase Account & Project

In this project, we are using the following Firebase services.

i. Push Notification

ii. Phone Authentication

iii. Firestore Database

iv. Firebase Analytics

For this, you need a Firebase account and a project set up in the Firebase.
Please follow the below steps for this,

i. Go to the Firebase console

ii. Sign up if you don’t have a Google Account or you want to create a new
account for your project. Otherwise, sign in with your Google Account.

iii. Click on Add Project

iv. Enter your project name

https://console.firebase.google.com/

v. Select Default Account for Firebase

(or you can create a new account)

vi. Create project

g. Set up Android App in Firebase Project

i. Go to the Firebase console

ii. Select the project you created in step 5.d.vi

iii. Go to Project Setting

iv. In the General Tab click on the Add App button

v. Select Android

vi. Fill out the form and click on the Register App Button

(Please check the below screenshot for reference)

vii. You need SHA keys (SHA-1 and SHA-256) to add once you create the
Android App in the above steps.

1. To Generate debug SHA use the below command

keytool -list -v -keystore "Your directory path\debug.jks" -alias
androiddebugkey -storepass android -keypass android

2. To Generate release SHA use the below command

keytool -list -v -keystore "your directory path\keystore.jks" -alias
androidreleasekey -storepass your store password -keypass your
key password

After generating the debug and release SHA, you have to add them in
the Firebase Console where you have created the Android app.

Please check the screenshot below for the reference.

viii. Download the google-services.json file from Firebase project settings
and paste it at android/app location.

ix. Setup Authentication

● Enable Sign in methods:
a. In the Firebase console's Authentication section, open the

Sign in method page.
b. From the Sign in method page, enable the methods which

are shown in the image.

https://console.firebase.google.com/project/_/authentication/providers

h. Setup Firebase iOS App

i. Go to the Firebase console

ii. Select the project you created in step 5.d.vi

iii. Go to Project Setting

iv. In the General Tab click on the Add App button

v. Select iOS

vi. Fill out the form and click on the Register App Button

(Please check the below screenshot for reference)

vii. Download the GoogleService-info.plist file from Firebase project settings
and paste it at the ios/Runner location in the app

viii. Change the credentials of google app

ix. Go to the Source Code\App\web\index.html file and replace <!-- <meta
name="google-signin-client_id"
content="YOUR_GOOGLE_SIGN_IN_OAUTH_CLIENT_ID.apps.google
usercontent.com"> --> with your google app id.

x. Go to the ios\Runner\AppDelegate.m file and replace “YOUR-API-KEY”
with your Api key.

xi. Replace “YOUR-REVERSED-CLIENT-ID” with your reversed client ID. You
can find this Id from the GoogleService-info.plist file you added from step
5.g.vii.

xii. XCode Project Setting

This step covers reviewing the most important settings in the XCode
workspace. For detailed procedures and descriptions, see Prepare for App
Distribution

1. Navigate to your target’s settings in XCode:

a. Open the default Xcode workspace in your project by running the
below command in a terminal window from your Flutter project
directory.

open ios/Runner.xcworkspace

b. Select the Runner target in the Xcode navigator to view your app's
settings.

2. Verify the most important settings

a. In the Identity section of the General tab

i. Display Name (The display name of your app.)

ii. Bundle Identifier (The App ID you registered on App Store
Connect.)

b. In the Signing & Capabilities tab

i. Automatically manage signing (Xcode should automatically
manage app signing and provisioning. This is set true by
default, which should be sufficient for most apps. For more
complex scenarios, see the Code Signing Guide)

ii. Team (Select the team associated with your registered Apple
Developer account. If required, select Add Account…, then

https://help.apple.com/xcode/mac/current/#/dev91fe7130a
https://help.apple.com/xcode/mac/current/#/dev91fe7130a
https://developer.apple.com/library/content/documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html

update this setting.)

c. In the deployment section of the build settings tab:

i. iOS Deployment Target

1. The minimum iOS version that the app supports is 14.0.

2. The General tab of your project settings should resemble
the following:

3. For a detailed overview of app signing, see Create, export,
and Delete signing certificates.

https://help.apple.com/xcode/mac/current/#/dev154b28f09
https://help.apple.com/xcode/mac/current/#/dev154b28f09

xiii. Upload your APNs authentication key

If you don’t already have an APNs authentication key, make sure to
create one.

1. Go to https://developer.apple.com and click Account

2. Log in with your Apple Developer account

https://developer.apple.com/

3. Click on Certificates, IDs & Profiles

4. Click on Keys and add a new key by clicking on the blue plus (+)
icon next to the title Keys.

5. On the next page, enter ‘APNS Key’ in the Key Name field and click
the checkbox to enable Apple Push Notifications service (APNs),
Device Check and Sign in with Apple. Also configure the Sign in
with Apple.

6. Click Register

7. Click Download. This will download the APNs key that you will
upload to Firebase. Please keep this page open to obtain the Key
ID and Team ID for Firebase.

NOTE: Once the key has been downloaded, it cannot be retrieved again.

8. Now that you have the APNS key downloaded, you will need to
upload this to Firebase. Open up a new browser tab or window and
navigate to https://console.firebase.google.com/

NOTE: The next few steps require you to have an iOS Firebase Certificate. If you
have not done this yet, please check out our iOS Firebase Certificate article before
continuing.

https://console.firebase.google.com/
https://learn.buildfire.com/en/articles/2060582-how-to-set-up-your-firebase-certificates-for-ios-and-android

9. Click on your App project

10.On the top left, click on the gear icon on the right side of Project
Overview and select Project Settings

11. Click on the Cloud Messaging tab and in the Apple app
configuration section, click Upload

12.Here you will upload the key file by clicking Browse. Select the file
that ends with .p8 that was downloaded in the previous steps. The
file name will look like this: AuthKey_UN823KU9WJ.p8

13.Now you will have to copy the Key ID and Team ID by going back to
your Apple Developer account. The Key ID is located below the key
name and the Team ID is located in the top right corner, next to
your Apple developer name.

14.Go back to the Firebase page and copy and paste the Key ID and
Team ID. Lastly, click on the Upload button.

i. Configure the Firebase setting to the Project

Go to the lib\widgets\firebase_option.dart file

● For Android settings replace your credentials in the android method

● For iOS settings replace your credentials in the ios method

i. Change App Icon

ii. For Android

Replace the icons in the android\app\src\main\res folder as shown in the
below image.

iii. For iOS

1. Replace the icons in the below folder as shown in the below image

ios\Runner\Assets.xcassets\AppIcon.appiconset

2. Change icons using XCode

a. Right-click on the iOS folder Choose Open in Xcode Option

b. Click on the folder icon left side of the XCode window

c. Select Runner.

d. Select Target runner

e. Go to App Icons And Launch Images

f. Click the right arrow button of the app icons source

g. Replace all the icons according to their size

NOTE:

● If you want to generate the App icon bundle from any image you have, you
can generate it from publicly available websites like

https://www.appicon.co/

j. Build Release for Android

i. Open Project in VS Code

ii. In Terminal Execute the below commands

flutter clean
flutter pub get
flutter build apk --release

https://www.appicon.co/

iii. After making the release, to generate the release bundle Execute the
below command

flutter build appbundle --release

iv. Get the APK from the below path

build\app\outputs\flutter-apk\app-release.apk

k. Build Release for iOS

i. Open Project in XCode

ii. Select Archive from the Product Menu

iii. After successfully archiving select the Organizer option from the
Windows menu

iv. After clicking on it opens one popup for Archive, Click on the Distribute
App Button

v. After successfully done, you can upload this app to your Apple developer
account in the TestFlight

vi. To publish your app from TestFlight please follow this link

l. Other Options for the Advanced User

i. Paths to the images used in the app

Images Path Screen Path

Business Rule assets/images/generatedBy.p
ng

lib\models\businessLayer\businessRule.dart

About Us Screen assets/images/logo.png lib\screens\aboutScreen.dart

Forgot Password Screen assets/images/logo.png lib\screens\forgotPasswordScreen.dart

Local Auth Screen assets/images/logo.png lib\screens\localAuthScreen.dart

Login Screen assets/images/logo.png lib\screens\newLoginScreen.dart

assets/images/appleicon.png

assets/images/googleicon.png

assets/images/facebookicon.p
ng

OTP Verification screen assets/images/logo.png lib\screens\otpVerificationScreen.dart

Splash screen assets/images/logo.png lib\screens\splashScreen.dart

Poppins assets/fonts/Poppins-Bold.ttf

assets/fonts/Poppins-Regular.ttf

assets/fonts/Poppins-SemiBold.ttf

assets/fonts/Poppins-Medium.ttf

assets/fonts/Poppins-Light.ttf

assets/fonts/Poppins-Thine.ttf

ii. Colors used in the app. If you want to change the colors you can make
the changes in the file lib/Theme/nativeTheme.dart

https://developer.apple.com/documentation/xcode/distributing-your-app-for-beta-testing-and-releases

Color code

Primary Color 0xFF223d82

Scaffold Background Color 0XFFFAFAFA

Icon Color 0XFF2B2F38

Elevated Button - background color 0xFF223d82

App Bar - foreground color 0XFFFAFAFA

App Bar - color 0XFFFAFAFA

App Bar - action icon color 0XFF2B2F38

App Bar - icon color 0XFF2B2F38

Card - color 0XFFFFFFFF

Checkbox - check color 0XFF2B2F38

Checkbox - fill color transparent

Radio - fill color 0XFF2B2F38

iii. Packages used in the app are listed below. You can find them in
pubspec.yaml file.

Package Name - Version Description

package_info_plus: ^8.0.0 For getting information about the application package

shared_preferences: ^2.2.2 For storing important data like user session

url_launcher: ^6.2.2 For launching types of url

material_design_icons_flutter:
7.0.7296

For icons

http: ^1.1.2 For making api requests

email_validator: ^3.0.0 For validate email address

font_awesome_flutter: ^10.6.0 For icons

image_cropper: ^8.0.2 For crop image feature

ribbon_widget: ^1.0.5 For showing ribbon on widget

printing: ^5.13.2 For print/share documents

local_auth: ^2.3.0 For access to facial and biometric data to provide a lock app
feature

badges: 3.1.2 For show counts on filter icons

encrypt: 5.0.3 For generate hash string

device_info_plus: ^10.1.0 For getting information about device like os, model, version

fl_chart: ^0.68.0 For showing beautiful charts in the app

flutter_randomcolor: ^1.0.14 For getting random color

fast_contacts: ^4.0.0 For accessing phone directory of the device

multi_image_picker_plus: ^0.0.4 For select multiple images

permission_handler: ^11.1.0 For asking device/system permission like access memory, contacts

google_sign_in: ^6.2.1 For implement sign in using google

flutter_facebook_auth: ^7.1.0 For implement sign in using facebook

sign_in_with_apple: ^6.1.2 For implement sign in using apple

share_plus: ^10.0.0 For sharing info on other platform like social media, email

connectivity_plus: ^6.0.3 For checking internet connectivity status

flutter_inappwebview: ^6.0.0 For showing web views in the app

in_app_update: ^4.2.2 For checking and updating android app

flutter_image_compress: ^2.1.0 For reduce image size

firebase_analytics: ^11.2.0 For tracking issues and bugs on Firebase Crashlytics

get_ip_address: ^0.0.7 For getting device ip address

cached_network_image: ^3.3.1 For showing images from network

pinput: 5.0.0 For showing OTP text box

flutter_cached_pdfview: ^0.4.2 For showing generated pdf preview

get: ^4.6.6 For state management

USEFUL LINKS

● To set up NodeJS with Typescript from scratch you can use this link

● To set up MySQL database you can use this link

● For more information on iOS refer to this link

https://www.youtube.com/watch?v=vyz47fUXcxU&t=125s
https://www.youtube.com/watch?v=eTRSl1As83A
https://flutter.dev/docs/deployment/ios

This document was last updated on 10 October 2024.

